From phenotype to genotype: a Bayesian solution.

نویسندگان

  • M J Denwood
  • A E Mather
  • D T Haydon
  • L Matthews
  • D J Mellor
  • S W J Reid
چکیده

The study of biological systems commonly depends on inferring the state of a 'hidden' variable, such as an underlying genotype, from that of an 'observed' variable, such as an expressed phenotype. However, this cannot be achieved using traditional quantitative methods when more than one genetic mechanism exists for a single observable phenotype. Using a novel latent class Bayesian model, it is possible to infer the prevalence of different genetic elements in a population given a sample of phenotypes. As an exemplar, data comprising phenotypic resistance to six antimicrobials obtained from passive surveillance of Salmonella Typhimurium DT104 are analysed to infer the prevalence of individual resistance genes, as well as the prevalence of a genomic island known as SGI1 and its variants. Three competing models are fitted to the data and distinguished between using posterior predictive p-values to assess their ability to predict the observed number of unique phenotypes. The results suggest that several SGI1 variants circulate in a few fixed forms through the population from which our data were derived. The methods presented could be applied to other types of phenotypic data, and represent a useful and generic mechanism of inferring the genetic population structure of organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genotype and phenotype of COVID-19: Their roles in pathogenesis

COVID-19 is a novel coronavirus with an outbreak of unusual viral pneumonia in Wuhan, China, and then pandemic. Based on its phylogenetic relationships and genomic structures the COVID-19 belongs to genera Betacoronavirus. Human Betacoronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) have many similarities, but also have differences in their genomic and phenotypic structure that can influence th...

متن کامل

Comparison of Single and Multi-Step Bayesian Methods for Predicting Genomic Breeding Values in Genotyped and Non-Genotyped Animals- A Simulation Study

     The purpose of this study was to compare the accuracy of genomic evaluation for Bayes A, Bayes B, Bayes C and Bayes L multi-step methods and SSBR-C and SSBR-A single-step methods in the different values of π for predicting genomic breeding values of the genotyped and non-genotyped animals. A genome with 40000 SNPs on the 20 chromosom was simulated with the same distance (100cM). The π valu...

متن کامل

kidd blood group genotyping in alloimmunized thallasemia patients

Abstract Background and Objectives Hemagglutination has limitations in identifying the phenotype of patients who have been recently transfused due to the presence of donor red cells (RBCs) in the patient’s circulation. Kidd blood group is one of the most important blood groups in transfusion medicine and related antibodies are responsible for one third of delayed haemolytic transfusion reactio...

متن کامل

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 278 1710  شماره 

صفحات  -

تاریخ انتشار 2011